对HVOF和金属陶瓷材料

的近期研究

五日市別 博士 著 谢国宏 博士 译

FUJIM INCORPORATED

FUJIMI在热喷涂领域的研究活动

喷涂细金属陶瓷粉末的新型HVOF系统的开发

高抗冲击性能金属陶瓷涂层的开发

HVOF喷涂固态润滑 MoS₂/Cu涂层的开发

在熔融铝合金、锌合金中高耐腐蚀性能的MoB金属陶瓷 材料的开发

等离子喷涂用纯Y2O3 粉末的开发

有色涂层的开发

HVOF喷涂金属陶瓷涂层的基底材料 与结合强度关系的阐明

金属陶瓷涂层新型淹没系统的开发

垃圾发电厂中耐热蚀和耐磨的金属陶瓷 喷涂材料的开发.

HVOF (? -gun)喷涂陶瓷涂层的形成

采用优化的WC粒子大小对WC 金属陶瓷涂层耐磨性的显著改善

< 金属陶瓷粉末在日本的典型消耗>

粉末制造工艺	粉末强度	大熔滴问题	沉积效率	工业消耗 / 年
熔化与破碎	非常高	非常少	低	3%
烧结与破碎	中 - 高	少	低 - 中	9%
团聚与烧结	低 - 高	少 - 经常	低 - 高	81%
涂覆(电镀)		少 - 经常	低	5%
混合		少 - 经常	低	2%

图 1

图 2

图 3

图 4

图5

粉末 b

粉末 d

< 有枪管的HVOF喷涂过程中典型大熔滴现象示意图>

< 金属陶瓷粉末在日本的典型消耗>

粉末制造工艺	粉末强度	大熔滴问题	沉积效率	工业消耗 / 年
熔化与破碎	非常高	非常少	低	3%
烧结与破碎	中 - 高	少	低 - 中	9%
团聚与烧结	低 - 高	少 - 经常	低 - 高	81%
涂覆(电镀)		少 - 经常	低	5%
混合		少 - 经常	低	2%

< HVOF 喷涂条件 >

喷枪	JP-5000 (Praxair/TAFA)
氧气流量	870 I/min at 1.45 MPa
煤油流量	0.38 I/min at 1.17 MPa
喷涂距离	355 mm
枪管长度	203 mm (8 inches)

< 粉末颗粒强度测试方法示意图>

< 颗粒强度测量中典型的载荷 - 位移曲线>

<颗粒强度和小颗粒含量的体积分数对沉积效率的影响>

粒径 (µm)

<采用JP-5000喷涂Cr₃C₂-25%NiCr 粉末时大熔滴转换曲线示意图>

< 通过送粉器后颗粒粒径的体积分数的改变>

颗粒强度		粒径分布			
	(MPa)	D _{3%}	D _{50%}	D _{97%}	
	送粉	(µ m)	(µ m)	(µ m)	
0.0	前	18.0	35.4	75.5	
98	后	16.8	32.2	66.7	
304	前	18.0	34.6	70.0	
	后	18.1	34.7	68.6	
725	前	19.5	35.9	73.3	
	后	19.4	35.8	72.8	

< 通过送粉器后低强度(98MPa)粉末的粒径 - 体积分数分析>

軟岩・中硬岩向きで、汎用性が高く広範囲の 岩石に適します。

	D ,¢	D ₂ ¢	Daø	dø	L	ı	在庫
KC-3425(MR-C6)	53	34	27.8	25	139	75	有
MC-8025(MR-C7)	55	30	26	25	145	70	有

途径 1

<提高金属陶瓷中的金属含量> WC/20CrC/7Ni WC/20CrC/10Ni

提高涂层中的金属比率涂层韧性改善

途径2

<与金属混合>

(WC/20CrC/10Ni)+10%NiCr、 (WC/20CrC/10Ni)+10%Ni

类球形金属相均匀分散起到冲击吸收物的功能

<冲击测试原理 - 1>

< 外形图 >

<冲击测试中剥离机理> (硬涂层情况下)

途径三 3

< 提高金属陶瓷中原始陶瓷颗粒的粒径 > WC:1.2 µm 5.0 µm

金属基体相的平均自由程增加涂层韧性提高

(冲击测试 - 1)

< 喷涂粉末的SEM 照片 >

WC/20CrC/7Ni

WC/20CrC/10Ni + 10%NiCr
<SURPREX W2010XJ>

< JP-5000 的氧气/煤油流量图 >

< 高耐冲击涂层的截面示意图>

No.	喷涂材料	制造工艺	粒径	金属陶瓷粉末	混合用 金属粉末
A	WC-12Co			WC-12%Co	
В	WC-20Cr ₃ C ₂ -7Ni	团聚与烧结		WC-20%Cr ₃ C ₂ -7%Ni	
С	SURPREX W2010XJ	团聚与烧结	15-45 µ m		Ni-20%Cr
D	SURPREX W2011XJ	+ 金属(混合)		WC-20%Cr ₃ C ₂ -10%Ni	Ni

此装置公司内部设计制造, 对湿环境下泥沙磨损的评 估很有用处

<外形图>

< 放大的试样图及其周边环境 >

< 测试前 >

< 测试后 >

< 外形图 >

< 测试前 >

<落球>

测试条件 落球:钢球(12.0mm) 行程:1500mm 冲击角:90° 测试载荷:3.0kg 基底:S45C(80×20^tmm) 涂层厚度:100µm

< 试样及其周边环境 >

涂层的残余应力(WC)

自由截面泥土掘进机的照片

<自由截面泥土掘进机的照片>

<用于掘进测试的4种掘头>

< 掘进测试后掘头磨损模式例子>

(a)

(b)

(d)

<影响涂层抗剥落性能的一些因素 >

<本研究中的基底种类>

碳钢合金钢 (<i>退火</i>)	SS400, S25C, S35C, S45C, S55C, SK3, SKS3, SNC815, SCM440, SNCM420
碳钢合金钢 (<i>淬火调质)</i>	S35C-H, S45C-H, S55C-H, SK3-H, SKS3-H, SNC815-H, SCM440-H, SNCM420-H
不锈钢	SUS304, SUS316 (奥氏体 SUS), SUS430 (铁素体 SUS), SUS440C (马氏体 SUS)*
铸铁	FC300, FCD500, High-Cr Cast iron (Fe-24.6Cr-2.75C-0.75Mn-0.48Si-0.025P-0.016S)
其他	Cemented carbide (E5、WC/13~15%Co), Hardfacing(Fe-1.38Mn-1.16Cr-0.49Si-0.25C-0.010P- 0.008S)

* Aneal ed, quenched & tempered

<冲击测试原理 - 1>

< 外形图 >

(喷砂砂粒大小对涂层抗剥离性能的影响)

喷涂后基底表面硬度 Hv_{200g}

离基底表面深度(µm)

< 冲击测试后涂层的横截面照片 >

·基底:SS400、金属陶瓷:WC/12Co、喷砂:A#220

n=0

n=5

n=9 (Separation)

< 冲击测试后涂层的横截面照片 >

·基底:SK3-H、金属陶瓷:WC/12Co、喷砂:A#220

n=0

<冲击测试中剥离机理> (硬涂层情况下)

喷涂材料:WC/12Co(-45+15µm)、喷枪:JP-5000

₩C原始粒径 :1.2µm

WC原始粒径 :6.0µm

<加工硬化系数的测试方法 >

几种基底的加工硬化系数